Chapter 1: Stoichiometric relationships - fast facts

1.1 Introduction to the particulate nature of matter and chemical change

Physical and chemical properties depend on the ways in which different atoms combine.

- Elements are single substances, composed of atoms of the same type.
- Compounds contain a fixed ratio of atoms of different elements and have different properties from their component elements.
- Mixtures contain more than one element or compound that are not chemically combined.
- Kinetic-molecular theory describes the differences in the properties of solids, liquids, and gases on the basis of the different kinetic energies of the particles.
- Every substance changes state by melting/freezing and boiling/condensing at a defined temperature at constant pressure.
- Chemical equations summarize the change when reactants are converted to products.
- State symbols indicate the state of a substance: (s) solid, (I) liquid, (g) gas and (aq) aqueous solution (dissolved in water).
- The coefficients in a chemical equation describe the relative amounts of reactants and products.

1.2 The mole concept

The mole makes it possible to correlate the number of particles with a mass that can be measured.

- The amount of substance (n) is measured in moles (mol). The mole concept applies to all species: atoms, molecules, ions, electrons, formula units.
- 1 mol contains the same number of chemical species as there are atoms in exactly 12 g of the isotope carbon12, ${ }_{6}^{12} \mathrm{C}$.
- 1 mol of any substance contains 6.02×10^{23} species.
- $6.02 \times 10^{23} \mathrm{~mol}^{-1}$ is called Avogadro's constant (L). It has units as it is the number of particles per mole.
- The relative atomic mass $\left(A_{r}\right)$ of an element is the average mass of an atom according to relative abundances of its isotopes, on a scale where the mass of one atom of ${ }_{6}^{12} \mathrm{C}$ is 12 exactly. It has no units.
- The relative molecular mass $\left(M_{r}\right)$ is the sum of the relative atomic masses of the atoms in the molecular formula.
- The relative formula mass of an ionic compound is the sum of the relative atomic masses of the ions in the formula.
- The molar mass (M) is the relative mass expressed in g and has units of $\mathrm{g} \mathrm{mol}^{-1}$.
- The empirical formula gives the ratio of the atoms of different elements in a compound. It is the molecular formula expressed as its simplest ratio.
- The molecular formula is a whole-number multiple of the empirical formula.

Chemistry

- The empirical formula of a compound containing the elements X, Y and Z can be determined by completing the following table:

	Mass/g or \% of X	Mass/g or \% of Y	Mass/g or \% of Z
Mass $/ \mathrm{g}$	m_{X}	m_{Y}	m_{Z}
$n /$ mol	$=m_{\mathrm{X}} / M_{\mathrm{X}}$	$=m_{\mathrm{Y}} / M_{Y}$	$=m_{\mathrm{Z}} / M_{\mathrm{Z}}$
Simplest ratio (divide by smallest amount in previous row)			

- The molecular formula shows the number of atoms of each element present in a molecule.
- Number of $\mathrm{mol}=$ mass/molar mass: $n=m / M$
- Number of particles = number of mol \times Avogadro's constant: $N=n L$

1.3 Reacting masses and volumes

Mole ratios in chemical equations can be used to calculate reacting ratios by mass and gas volume.

- The limiting reactant determines the theoretical yield of product. The other reactants are in excess.
- The theoretical yield is the mass or amount of product produced according to the chemical equation, assuming 100% reaction of the limiting reagent.
- Percentage yield $=($ experimental yield/theoretical yield $) \times 100 \%$
- The kelvin is the SI unit of temperature: $\mathrm{T}(\mathrm{K})=\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273$
- Units of volume: $1 \mathrm{dm}^{3}=1 \times 10^{-3} \mathrm{~m}^{3}=1 \times 10^{3} \mathrm{~cm}^{3}$
- For a fixed mass of an ideal gas at constant $T: \quad P=k_{1} / V\left(k_{1}\right.$ constant $)$

- For a fixed mass of an ideal gas at constant $V: \quad P=k_{2} T$

- The combined gas law: for a fixed mass of gas: $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
- The ideal gas equation: $P V=n R T$
- $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, T$ must be in K.
- Temperature (in K) is a measure of the average kinetic energy of the particles. Particles have minimum kinetic energy at absolute zero (0 K).
- As kinetic energy $=1 / 2 m v^{2}$ and all gases have the same kinetic energy at the same temperature, particles with smaller mass move faster.
- Avogadro's law states that equal volumes of different gases contain equal numbers of particles at the same temperature and pressure.
- Number of mol = volume/molar volume $=V / V_{\mathrm{mol}}$
- Molar volume, V_{m}, of any gas at $S T P=2.27 \times 10^{-2} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$.
- STP for gases is standard temperature ($0^{\circ} \mathrm{C}$ or 273 K) and pressure (100 kPa).
- Density = mass/volume; $\rho=m / V$
- A solution is a homogeneous mixture of a liquid (the solvent) with another substance (the solute). The solute can be solid, liquid, or gas but the solvent is generally a liquid.
- Concentration is the amount of solute in a known volume of solution. It can be expressed either in $\mathrm{g} \mathrm{dm}^{-3}$ or $\mathrm{mol} \mathrm{dm}{ }^{-3}$. Concentration in $\mathrm{mol} \mathrm{dm}^{-3}$ is often represented by square brackets around the substance:

$$
\begin{array}{ll}
{\left[\text { solute] }\left(\mathrm{mol} \mathrm{dm}^{-3}\right)=n_{\text {solute }}(\mathrm{mol}) / V_{\text {solution }}\left(\mathrm{dm}^{3}\right)\right.} & n_{\text {solute }}=[\text { solute }] \times V_{\text {solution }}\left(\mathrm{dm}^{3}\right) \\
& n_{\text {solute }}=[\text { solute }] \times V_{\text {solution }}\left(\mathrm{cm}^{3}\right) / 1000
\end{array}
$$

- Titration is a chemical technique in which one solution is used to analyse another solution to find its concentration or amount.

